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Abstract. This paper establishes the Bohr inequality with respect to the spherical chordal distance for the class of analytic 
functions mapping the unit disk in the complex plane into the punctured unit disk. 

INTRODUCTION 

Let 

 
0n

n
n zazf   

 
be analytic in the unit disk 1: : zzU  of the complex plane satisfying 1zf  in U . Bohr [ 1] in 1914 showed 
that these functions satisfy 
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in the disk 61z . This result became known as the Bohr theorem. The radius 61 was later improved independently 
to the sharp constant 31 by Wiener, Riesz and Schur (see [ 2- 4]). Analogous results to the Bohr for several complex 
variables have been established by replacing U  with a complete Reinhardt domain [ 5], a unit ball or hypercone in 
higher dimensions [ 6]. 
 An equivalent form for  (1) is 
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where d  and U  denote respectively the Euclidean distance and the boundary of U . Generally, a class of analytic 

(or harmonic) functions 
0n

n
n zazf  in U  is said to have a Bohr phenomenon (first introduced in [ 7]) if there 

exists a number 10 0  satisfying 
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for all 0z . The constant 0  is then known as the Bohr radius for this class of functions (with respect to the 
Euclidean distance). Under this definition, the Bohr radius 31  has been found to hold for the class of convex 
functions [ 8] and the class of analytic functions mapping U  into the exterior of the closed unit disk [ 9]. 
 This paper discusses the Bohr phenomenon for the class 0H  consisting of analytic functions mapping U  into the 
punctured unit disk 0 \0 UU . Instead of the Euclidean distance, the following spherical chordal distance will be 
used: 
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Note that  1 , ,0 , min , 0000 aaUa  and 
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 Given an analytic function 
0n

n
n zazf , define 
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It is evident that both power series 
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n za  have the same radius of convergence.  The 

following properties will be needed in the sequel. Let 
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MAIN RESULTS 

LEMMA 1. Let f  be an analytic function mapping the unit disk U  into itself. If 1012 f , then 0
* Uzf  

for 31z . 

PROOF. Write 
1n

n
n zaazf  and without loss of generality, assume that 112 a . Let 

n
i2 exp   be 

the n -th root of unity. As U  is convex and 0
1

n

k

k , the analytic function 
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has its image in U . Letting nz , the function 
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is again an analytic function mapping U  into itself. Applying the Schwarz-Pick Lemma gives 
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Thus for 31z , 
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Since 12a  implies 0212 2aa , inequality  (2) gives 0* zf . On the other hand, 1a  implies 

1212 2aa  and so inequality  (3) gives 1* zf .      ■ 

 
 
REMARK 2. The inequalities  (2) and  (3) yield the following important inequality: 
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REMARK 3. The condition in LEMMA 1 cannot be removed. Consider the Möbius transformation  in U , 
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Note that 
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if and only if 0 21 2 zaa , that is, for 221 aaz . However, 3121 2aa  holds for 

0.2807743170 a  which implies 00
* z   for some 310z . 

 
LEMMA 4. If 0Hf , then for 31z , 
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PROOF. Write 
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provided 01261

2222 aaaa , which is true for all 12,0a . Thus  (4) and  (5) give 
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provided 0333134 3234 aaaaaa . As 0333 32 aaa  for 1 ,12a , it follows that 

034 34 aa  for all 1 ,12a . Thus  (4) and  (6) give 
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 Define two subclasses of 0H  as follows: 
 
 1200:01 fHfH   

and 
 , 1012:02 fHfH   

 
where 021 HHH  and  21 HH . As mentioned earlier, the Bohr phenomenon stated in the following results 
considers the spherical chordal distance  instead of the usual Euclidean distance. 
 
 
THEOREM 5. The class 2H  has Bohr phenomenon and the Bohr radius is 31 . The Bohr phenomenon does not 
occur in the class 1H . 
PROOF. The result follows from LEMMA 4. To show the Bohr radius is 31 , consider the function 
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for some real a  so that 112 ae . The Taylor series expansion for f  is 
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where  are positive integers and the latter sum is taken over all m -tuples msss ,,, 21  satisfying 

nsss m21 . Thus 
 

050002-5

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP:  60.49.37.129 On: Fri, 11 Nov 2016 14:28:48



 
, 

1-m
1-n

!
211

 
1-m
1-n

!
211

1 1

1

n

n

n

m

m

aa

n

m mn

m

aa

z
m
a

ee

z
m
a

ee
zf

  

 
which yields 

 .2 
1-m
1-n

!
211

1 1

* zf
e

z
m
a

ee
zf a

n

n

n

m

m

aa
  

 
Thus for Uz , 
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and it follows that 
 
 zfezfe aa  , , *  (7) 

 
by the definition of . Let 00 aefb  . Since ba log , f  can be written as 
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if and only if 31r  as 1b . Consequently, together with  (7) and  (8), 
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for 31r  as 1b . Thus the value 31  is best possible.    ■ 
 
COROLLARY 6. The Bohr phenomenon does not occur in the class 0H . 
PROOF. THEOREM 5 and the fact that 01 HH .    ■ 
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